At-Home Athletes | Få mest muligt ud af din hjemmetræning


Sæt realistiske træningsmål
- S - Specifik
- M - Målbar
- A - Opnåelig
- R - Realistisk
- T - Tidsbundet1
Hvad er atletik?
Styrke og kraft
At opnå dette derhjemme
Alternativer
Det kan også være en god idé at undersøge BFR-træning i blodgennemstrømning. Svarende til reduceret hvile, arbejde til failure og øget antal bevægelser efter hinanden, fører BFR til større ophobning af metabolitter og derfor metabolisk stress. Det har vist sig at bevare magert muskelmasse og endda øge muskelhypertrofi. For at udføre BFR-træning skal du blot lægge pres på den muskel, du arbejder (typisk ved hjælp af en tourniquet) og derefter bruge en meget let belastning og arbejde tæt på failure.
Udholdenhed
At opnå dette derhjemme

De andre komponenter i atletik
Hastighed
Adræthed
Balance og koordination
Kort fortalt

At-Home Athletes | Optimer din performance kost med hjælp fra ekspertens hjælp
Dette bør du gøre.

1. Bovend’Eerdt, T. J., Botell, R. E., & Wade, D. T. (2009). Writing SMART rehabilitation goals and achieving goal attainment scaling: a practical guide. Clinical rehabilitation, 23(4), 352-361.
2. National Strength And Conditioning Association. Long-Term Athletic Development Position Statement.
3. Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports medicine, 46(10), 1419-1449.
4. Lowery, R. P., Joy, J. M., Loenneke, J. P., de Souza, E. O., Machado, M., Dudeck, J. E., & Wilson, J. M. (2014). Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clinical physiology and functional imaging, 34(4), 317-321.
5. Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research, 24(10), 2857-2872.
6. Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11.
7. Hawley, J. A., Hargreaves, M., Joyner, M. J., & Zierath, J. R. (2014). Integrative biology of exercise. Cell, 159(4), 738-749.
8. Pinckard, K., Baskin, K. K., & Stanford, K. I. (2019). Effects of exercise to improve cardiovascular health. Frontiers in cardiovascular medicine, 6, 69.
9. Vega, R. B., Konhilas, J. P., Kelly, D. P., & Leinwand, L. A. (2017). Molecular mechanisms underlying cardiac adaptation to exercise. Cell metabolism, 25(5), 1012-1026.
10. Anderson, L., Thompson, D. R., Oldridge, N., Zwisler, A. D., Rees, K., Martin, N., & Taylor, R. S. (2016). Exercise‐based cardiac rehabilitation for coronary heart disease. Cochrane Database of Systematic Reviews, (1).
11. Sonchan, W., Moungmee, P., & Sootmongkol, A. (2017). The effects of a circuit training program on muscle strength, agility, anaerobic performance and cardiovascular endurance. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 11(4), 170-173.
12. Bolger, R., Kenny, I. C., Lyons, M., & Harrison, A. J. (2014). Sprinting performance and resistance based training interventions: A systematic review with meta-analysis.
13. Inglis, P., & Bird, S. P. (2016). Reactive agility tests: review and practical applications. Journal of Australian Strength and Conditioning, 24, 62-69.
14. Zemková, E., & Hamar, D. (2014). Agility performance in athletes of different sport specializations. Acta Gymnica, 44(3), 133-140.
15. Trecroci, A., Cavaggioni, L., Caccia, R., & Alberti, G. (2015). Jump rope training: Balance and motor coordination in preadolescent soccer players. Journal of sports science & medicine, 14(4), 792.
16. Haruyama, K., Kawakami, M., & Otsuka, T. (2017). Effect of core stability training on trunk function, standing balance, and mobility in stroke patients: a randomized controlled trial. Neurorehabilitation and neural repair, 31(3), 240-249.
17. Anderson, K., & Behm, D. G. (2005). The impact of instability resistance training on balance and stability. Sports medicine, 35(1), 43-53.